
1055

0022-4715/03/0300-1055/0 © 2003 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 110, Nos. 3–6, March 2003 (© 2003)

Computations of Dendrites in 3-D and Comparison
with Microgravity Experiments

Y. B. Altundas1 and G. Caginalp1

1 Mathematics Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260; e-mail:
{ybast,caginalp}@pitt.edu

Received September 27, 2001; accepted February 28, 2002

The phase field model is used to compute numerically the temporal evolution of
the interface for solidification of a single needle crystal of succinonitrile (SCN)
in a three dimensional cylindrical domain with conditions satisfying microgra-
vity experiments. The numerical results for the tip velocity are (i) consistent with
the experiments, (ii) compatible with the experimental conclusion that tip veloc-
ity does not increase for larger anisotropy (e.g., for pivalic acid), (iii) different
for 3D versus 2D by a factor of approximately 1.76, (iv) strongly dependent on
physical value of the kinetic coefficient in the model. Also, as indicated by
theory and the laboratory experiments, the results obtained for single needle
crystal show that the growth velocity approaches a constant value in large time.
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crystal; succinonitrile; microgravity.

The temporal evolution of an interface during solidification has been under
intensive study by physicists and material scientists for several decades. The
interface velocity and shape have important consequences for practical
metallurgy, as well as the theory, e.g., velocity selection mechanism and
nonlinear theory of interfaces. The simplest observed microstructure is the
single needle crystal or dendrite, which has been modeled in an early study
by Ivantsov (1) as a paraboloid growing at a constant velocity, v0, with tip
radius, R0, subject to the heat diffusion equation and latent heat consider-
ations at the interface. With the interface stipulated to be at the melting
temperature, the absence of an additional length scale implies the existence



of an infinite spectrum of pairs of velocities and tip radii, (v0, R0). Exper-
imentally it has been observed that a unique pair (vexp, Rexp) is selected,
so that the tip velocity is constant throughout the experiment, and is
independent of initial conditions.

The theoretical mechanism for this velocity selection has been the
focus of much of the theoretical research on the subject (see, for example,
refs. 2–6). The emergence of the capillarity length associated with the
surface tension as an additional length scale has provided an explanation
for the selection mechanism. Advances in computational power and a
better understanding of interface models and their computation have
opened up the possibility of comparing experimental values for the tip
velocity with the numerical computations. This is nevertheless a difficult
computational issue in part due to the large differences in length scales that
range from 1 cm for the size of the experimental region, to 10−6 cm for the
capillarity length, to 10−8 cm interface thickness length.

One perspective into the theoretical and numerical study of such
interfaces has been provided by the phase field model introduced in refs. 7
and 8 in which a phase, or order parameter, f, and temperature, T, are
coupled through a pair of partial differential equations described below
(see also more recent papers). (9, 10) In physical terms, the width of the tran-
sition region exhibited by f is Angstroms. In the 1980’s two key results
facilitated the use of these equations for computation of physically relevant
phenomena. If the equations are properly scaled one can (i) identify each of
the physical parameters, such as the surface tension, and attain the sharp
interface problem as a limit, (11, 12) and (ii) use the interface thickness, e, as a
free parameter, since the motion of the interface is independent of this
parameter. (13) The latter result thereby opened the door to computations
with realistic material parameters, by removing the issue of small interface
thickness. However, the difference in scale between the capillarity length
and overall dimensions still pose a computational challenge.

More recently, several computations, have been done using the phase
field model, (14–21) with some 3D computations in refs. 15 and 16 utilizing
the model of ref. 22, that will be compared with our results below.

In this paper we present computations that have the following novel
features:

(A) We perform numerical computations for a cylindrical region in
three dimensional space by utilizing rotational symmetry. This allows us to
compare the tip velocity with the actual experiments in a meaningful way.

(B) The calculations utilize the parameters and boundary conditions
of the IDGE microgravity experiments for succinonitrile (SCN). (23) All
previous experiments done under normal gravity conditions involved
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convection. Hence this provides the first opportunity to compare experi-
ments in the absence of convection to theory that also excludes convection.
Our results for tip velocity compare favorably with the data of these
experiments.

(C) The role of anisotropy in velocity selection has been noted in the
computational references cited above. Glicksman and Singh (24) compare
experimental tip velocities of SCN with pivalic acid (PVA) whose coeffi-
cients of surface tension anisotropy (defined below) differ by a factor of 10
but are otherwise similar, except perhaps for the kinetic coefficient. The
graph of their data (ref. 24, Fig. 7) indicates that the tip velocities of the
two materials differ by less than 10 percent.

We perform two sets of calculations in which all parameters are iden-
tical (SCN values) except for the anisotropy coefficient. Our computations
confirm (consistent with the experimental results (24)) that the velocities are
nearly identical when the magnitude of the anisotropy is varied by a factor
of 10 with all other parameters fixed (at the SCN values).

Researchers using solvability theory (2–6) have maintained that the
presence of anisotropy in the governing equations is necessary in order to
select the appropriate tip velocity. The fact that this tip velocity does not
appear to change much as the magnitude of anisotropy is increased appears
to be consistent with solvability theory.

(D) Most of the previous numerical computations that simulate the
interface growth were done in 2D. Our computations shows that the 2D
and 3D computations differ by a factor of approximately 1.76.

(E) The role of the kinetic coefficient (see definition of a below
Eq. (1b)) is subtle, and this material parameter is often set to zero, for
convenience, in theoretical and computational studies. We find, however,
that there is a significant difference in the tip velocity when all other
parameters are held fixed while this coefficient is varied.

Consequently, this kinetic coefficient may be of crucial importance in
determining the selection of tip velocity. A better understanding of this
issue may lead to theory that can explain a broader range of undercooling
and velocities.

Our findings also have implications in terms of computations using
variations on phase field models that either set the kinetic coefficient to
zero or introduce artificial kinetic terms. This suggests that further exper-
iments and theory on this subject may lead to a deeper understanding
of dendritic phenomena. In the computations below we use a version of
the phase field equations introduced in ref. 22, for which the phase or
order parameter, f(xF, t), as a function of spacial point, x, and time, t, is
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exactly − 1 in the solid and+1 in the liquid. We define the dimensionless
temperature, u, and the capillarity length, d0, by

u(x, t)=
T − Tm

lv/cv
, d0=

scv

[s]E lv

where Tm, lv and cv are the melting temperature, latent heat and specific
heat per unit volume of the material, respectively. Thus, we write the
dimensionless phase field equations as following.

ut+
1
2 Ft=D N2u (1a)

ae2ft=e2 N2f+g(f)+
5e

8d0
uf −(f) (1b)

where

g(f)=
(f − f3)

2
, f −(f)=(1 − f2)2, D=

K
cv

and the interface is defined by C={x ¥ W : f(x, t)=0}. Here a is the
kinetic coefficient and e is the interface thickness that can be used as a ‘‘free
parameter.’’ (13) In the limit as e vanishes as all other parameters held fixed,
solutions to (1a) and (1b) are governed by the sharp interface model

ut=D N2u in W − C(t) (2a)

vn=D Nu · n1−
+ in C(t) (2b)

u=−d0o − a d0vn (2c)

where the parameters d0, D, a are the same as in (1a) and (1b), and vn is the
interface growth velocity (with normal chosen from solid to liquid). (7, 22)

In order to simulate the interfacial growth of a 3D single needle
dendrite for the compound succinonitrile (SCN) in a cylindrical geometry
(under the assumption that the needle grows symmetrically), we consider a
domain which is a cylindrical chamber filled with the pure melt. A small
radially symmetric seed is placed at the bottom center of the chamber. We
denote the flat surface of the cylinder where the seed is placed by S1, the
flat surface across from the seed (i.e., far field) by S2, and the curved
surface around the cylinder by S3. Thus we define the boundary and initial
conditions below as follows. The temperature at S2 and S3 are kept at the
constant undercooling value u.. The temperature at S2 is also kept at a
constant (in time) temperature, but declines exponentially from u=0 on
the interface of the seed to the intersection of S2 with S3, where u=u..

1058 Altundas and Caginalp



In particular, the boundary condition for u on S2 is given as utrav(s, 0)
where s is the distance from the seed interface, and

utrav=˛u.(1 − exp{ − v(z − vt/|u. |)/(D|u. |)}) z > vt/|u. |
0 z [ vt/|u. |

(3)

is a plane wave solution to a 1-D problem. The order parameter is initially
set to its equilibrium value

f(r)=tanh((r − vt)/(2e)) (4)

where r is the signed distance (positive in the liquid) from the interface. (22)

The boundary conditions for f are defined to be compatible with those on
the temperature.

The anisotropy is incorporated into the equations through the surface
tension where one has precise and quantitative experimental data in order
to utilize the experimentally observed quantities and parameters. Thus, we
write the surface tension as

s(h)=s0[1+ds cos(M(h − h0))] (5)

where M is an integer, ds ¥ R+ and h0 are the amplitude of the anisotropy
and the preferred angle, respectively. The variable h in (5) is defined to be
the angle between the normal to the interface and x-axis, i.e.,

cos h=
NFf

|Nf|
· x1

We suppress the second angle in the anisotropy in view of the cylindrical
symmetry. Asymptotic analysis (25) shows that with anisotropy the general-
ized Gibbs–Thomson relation (2c) is modified not only in terms of an angle
dependent surface tension, s(h), but with its second derivative as well so
that (2c) becomes

u=−d0(h) o − a d0(h) vn (2cŒ)

where, now, the relationship between s and d0 is given by

d0(h)=
s(h)+s'(h)

[s]E lv
cv

Hence, if (M2 − 1) ds < 1 is satisfied then the curvature has its
maximum at h=h0. (13) This is consistent with the experimental evidence. (24)
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For computational convenience, we take a vertical cross section
through the origin. Upon writing the Eqs. (1a) and (1b) in cylindrical
coordinates, the terms involving h drops out and we get a simplified form
of the phase field equations in a cylindrical coordinate system.

We use a semi-implicit Crank–Nicolson finite difference method to
discretize the equations by lagging the nonlinear terms in (1b). The singu-
larity at r=0 is avoided by using the operator value “

2

“r2 as an approxima-
tion for 1

r
“

“r at r=0 only. (26) The motivation for this approximation is that
both “f

“r and “u
“r are zero at r=0.

An adequate number of mesh points on the domain are necessary for
the accurate computation of f in the interfacial region, which is costly since
the mesh size has a strong influence on the speed and size of the computa-
tion. We lay L × L uniform mesh points over the domain such that at least
6 or 7 grid points are located at the interfacial region as measured from
f=−0.9 to f=0.9. Throughout computations for each undercooling
value, we set L=600.

Using the undercooling value Du=0.01, we performed computations
for different choice of grid sizes to test the grid convergence. Table I shows
the corresponding velocities for L=200, 300, 400, 500, 600 and 700 when
all other conditions are identical. Of course, the grid sizes smaller than 400
result in an interface width that is unrealistic, but we have an excellent
convergence as shown by the values of L=600 and L=700.

The measured values of d0, D and s0 for SCN are given by
2.83 × 10−7 cm, 1.147 × 10−3 cm 2/s and 8.9 ergs/cm 2, respectively. (27) We
set the free parameter, e, as h where h=1/L and the time step is Dt=5×10−3.
Under these conditions, one has R0 Ã 14h and the diffusion length, D/vn,
is at least 20 times larger than the tip radius, R0, satisfying the standard

Table I. Computational Growth Velocities Corre-

sponding to the Undercooling Value 0.01 of SCN.

The Velocities Are Calculated at t*=16 s. From

The Initial Stage for Each L when All Other

Conditions Are Identical

L Velocity (cm/s)

200 0.002100
300 0.000360
400 0.000304
500 0.000327
600 0.000342
700 0.000357
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theoretical conditions for dendritic growth. (17) Moreover, we set M=4 and
h0=p/2 so that the solid protrudes further in the vertical and the horizon-
tal directions in accordance with 4-fold symmetry.

Upon using (3) and (4) as initial conditions and the boundary condi-
tions described above, semi-implicit finite difference discretization of the
equations results with two systems of equations

Aff=bf (6)

Auu=bu (7)

where Au and Af are the corresponding coefficient matrices, and bu and bf

are the right handside vectors for u and f, respectively. Equations (6) and
(7) are solved consecutively for each time stepping Dt by ITPACK2C which
is a collection of subroutines written in Fortran programming language for
solving large linear system of equations by adaptive accelerated iterative
algorithms. (28)

In order to address the issue raised in (A) and (B) above we consider
nine dimensionless undercooling values from the microgravity experiments
(IDGE) for SCN. (23) The computations for 20 seconds confirm that there is
a linear relation between the undercoolings and corresponding growth
velocities (Figs. 1 and 2) for SCN. Table II shows that the computed results
for velocity are close to the experimental values for each of the (dimen-
sionless) undercooling values 0.00610, 0.0079, 0.01, 0.0126, 0.0161 and
0.0205 and outside of the experimental error range for the values 0.0265,
0.0338 and 0.0437. The results are consistent with other phase field studies
that confirm this linear relation (see e.g., ref. 15)).

The tip radius is more difficult to measure accurately. We use the
method of selecting six points on near the tip of the paraboloid and using
a least squares procedure to select the optimal parabola. The radius of
curvature can then be determined from this curve in an accurate way.
The results are within a factor of three of the microgravity experiment
measurements.

Next, we consider the issue discussed in (C) above. We note that other
numerical studies involving anisotropy have usually assumed dynamical
anisotropy. Here we use only the anisotropy that can be quantified from
experiments, namely, the anisotropy of the surface tension, which is an
equilibrium quantity. For the undercooling 0.01, we perform three compu-
tations for different ds values of 0.005, 0.01 and 0.03 to determine the
influence of anisotropy on the tip velocity [see Eq. (5)]. The corresponding
growth velocities for each ds are 0.000524, 0.000527 and 0.00054 (cm/s),
respectively.
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Fig. 1. The plots of the dendritic growth into melt for the supercooling 0.001; (a) shows the
phase field, and (b) shows the temperature field after 100 s.

As mentioned earlier, the surface tension anisotropy for PVA is much
larger than that of SCN. The experiments suggest that the tip velocity is
similar for both materials. However, the possible difference in the kinetic
coefficients between the two materials does not allow one to conclude that
the magnitude of anisotropy does not influence the tip velocity. Our com-
putational studies, on the other hand, indicate that an order of magnitude
change in the anisotropy coefficient does not change the tip velocity signi-
ficantly, confirming the stated conclusion of the experimenters. (24) More-
over the shape of the dendrite also does not appear to be effected very
much. Only the tip of the dendrite becomes sharper for larger anisotropy,
also confirming the experimental results.

The comparison of the growth velocities in 2D and 3D are examined
for the undercoolings values of 0.01, 0.0161 and 0.0265. Since exactly the
same initial and boundary conditions are used in both computations, the
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Fig. 2. Dimensionless supercooling versus growth velocities (Log scales).

tip velocities for 2D and 3D can be compared. The velocities corresponding
to these undercoolings in 2D are 0.00033, 0.0005 and 0.00066 (cm/s),
compared with the values of 0.00058, 0.00083 and 0.0012 (cm/s), respec-
tively.

The ratio 1.76 can be put in perspective by examining the limiting
sharp interface equations (2a) and (2b). Physical intuition suggests that the
growth of the interface is limited mainly by the diffusion of the latent heat

Table II. Microgravity Dendritic Growth Velocity Measurements Calculated from

Telemetered Binary Images from the Space Shuttle Colombia (STS-62) and

Computational Velocities

Velocity (IDGE) Velocity (Computational)
Supercooling (cm/s) (cm/s)

0.0437 0.01698 0.001770
0.0338 0.00872 0.001486
0.0265 0.00462 0.001273
0.0205 0.002328 0.001066
0.0161 0.001417 0.000922
0.0126 0.000840 0.000784
0.0100 0.000500 0.000681
0.00790 0.000343 0.000590
0.00610 0.000204 0.000502
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manifasted in the condition (2b). When diffusion is rapid, the heat equation
is approximated by Laplace’s equation, whose radial solutions are of the
form rD. The latent heat condition (2b) implies that the normal velocity is
proportional to the gradient, or DrD − 1. Comparing this term for D=3
versus D=2, one has a ratio of 3/2=1.5. Analogously, if we examine the
Gibbs–Thomson relation alone, and solve (2c) for the normal velocity, we
see that dimensionality arises (directly) in terms of o, the sum of principal
curvatures, which is (D − 1)/R0 where R0 is the radius of curvature. Hence
this factor would suggest that at least one of the terms in this expression
for the velocity has a coefficient D − 1, suggesting a ratio of (3 − 1)/
(2 − 1)=2. Thus a heuristic examination of the key limiting equations
suggests that the tip velocity in 3D should be about 1.5 to 2 times that of
the 2D system. Of course there are numerous nonlinearities involved in the
equations that could alter this ratio. Our calculations fall well in the range
1.5 to 2, thereby lending some support to the heuristics above.

As discussed above, the tip velocity of the dendrite has been the focus
of much of the theoretical research known as ‘‘solvability theory’’ for many
years. (2–6) This research has focused on the mechanism whereby a single
velocity is selected from the infinite spectrum of possibilities that are
obtained from Ivantov solutions as a consequence of additional length
scale introduced by surface tension. The phase field computations have
provided an independent method for computing this velocity and thereby
checking the theory. The phase field computations of refs. 10 and 15 have
demonstrated the consistency between the numerical computations and
theory. In ref. 10 a number of variations of phase field equations are
compared to the results of solvability theory. In each case, the phase field
computations reach a steady state in which the tip velocity is constant. The
computed velocities are within a few percent of the velocity predicted by
solvability theory. The work of ref. 10 and earlier work (29) also show that
the variations on the phase field equations (including those that claim a
greater level of ‘‘thermodynamic consistency’’) are almost identical in terms
of the computed result and time required for the computation.

Our calculations confirm that the single needle-crystal approaches a
constant growth rate in a 3D computation. For example, using the dimen-
sionless undercooling value of 0.01, the average growth velocity is cal-
culated at nine different time steps from 10 to 110 s. The results show that
the growth velocity approaches a constant value in large time (Fig. 3) as
indicated in solvability theory and previous computational studies. (10)

Finally, we examine the role of the kinetic coefficient, discussed in (E)
above, by varying a while other parameters are fixed. We use the under-
cooling Du=0.01 with the kinetic coefficients 1.5 × 106, 3.0 × 106 and 3.5 × 106

so that we could see the change in the growth velocity when the magnitude
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Fig. 3. Computational growth velocity versus time for the undercooling 0.01.

of kinetic coefficient is reduced from the value, 3.5 × 106, which is the value
we used throughout our computations. The corresponding velocities for
each a are 0.00016, 0.00066, and 0.00083 (cm/s). This indicates a strong
dependence on this parameter which is a physically measurable quantity.
Hence, setting this parameter to zero, which may be convenient from some
perspectives (see e.g., refs. 15 and 16) appears to change the tip velocity
significantly. This may be the reason for the conclusion in ref. 15, p. 4347,
that ‘‘For PVA the agreement between theory and experiment remains very
poor.’’ In other words, the approximation a % 0 is not valid for some
materials. The material constants for PVA and SCN differ in the magni-
tude of the anisotropy and, perhaps, the kinetic coefficient, a. We have
demonstrated that the magnitude of the anisotropy (when altered by
almost an order of magnitude) does not have a strong influence on the tip
velocity, while the kinetic coefficient (when altered by much less than an
order of magnitude) has a dramatic influence. Thus, our calculations suggest
that the kinetic coefficient is perhaps responsible for the lack of agreement
between computations (or theory) versus experiment. At present there is
little theoretical evaluation and experimental data for this parameter. (30)

In all other experiments in this paper, we used a value of 3.5 × 106 which is
obtained from (2c). Further experimental data on this parameter would be
very useful for developing our understanding of dendritic phenomena.
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